Муниципальное бюджетное общеобразовательное учреждение Пышминского городского округа

«Четкаринская средняя общеобразовательная школа»

СОГЛАСОВАНО

Зам. Директора по ВР

/И.В.Шпак

Of celemonal 2023

УТВЕРЖДАЮ

Директор 3/1/Е.В.Кривоногова

Приказ № 84/1 от 01 29 2023 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

технической направленности

«РОБОТОТЕХНИК»

возраст учащихся 11-15 лет

срок реализации программы 1 год

Автор-разработчик:

Коротких Татьяна Витальевна,

педагог дополнительного образования

с. Четкарино, 2023 г.

Муниципальное бюджетное общеобразовательное учреждение Пышминского городского округа

«Четкаринская средняя общеобразовательная школа»

СОГЛАСОВАНО	УТВЕРЖДАЮ		
Зам. Директора по ВР	Директор	/E.E	3.Кривоногова
/И.В.Шпак	Приказ №	_OT	2023_r.
2023			

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

технической направленности

«РОБОТОТЕХНИК»

возраст учащихся 11-15 лет

срок реализации программы 1 год

Автор-разработчик:

Коротких Татьяна Витальевна,

педагог дополнительного образования

с. Четкарино, 2023 г.

1. Основные характеристики

1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехник» технической направленности, так как ориентирована на развитие способностей детей к моделированию, конструированию, программированию.

Актуальность общеразвивающей программы

Актуальность раскрывается через соответствие программы нормативным правовым актам и государственным программным документам:

- 1. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Концепция развития дополнительного образования детей до 2030 года, утвержденная распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р.
- 3. Приказ Министерства просвещения Российской Федерации от 09.11.2018 №196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- 4. Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».
- 5. Методические рекомендации по проектированию дополнительных общеразвивающих программ (Письмо Министерства образования и науки Российской Федерации № 09-3242 от 18.11.2015 г.).
- 6. Приказ Минобрнауки России от 23.08.2017 №816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ».
- 7. Стратегия развития воспитания в Российской Федерации на период до 2025 года. Утверждена распоряжением Правительства РФ от 29 мая 2015 г. № 996-р.
- 8. Государственная программа Российской Федерации «Развитие образования», утв. Постановлением Правительства РФ от 26 декабря 2017 г. №1642.
- 9. Национальные проект «Образование» (паспорт утвержден президиумом Совета при Президенте Российской Федерации по стратегическому развитию и национальным проектам (протокол от 24 декабря 2018 г. № 16)).
- 10. Федеральный проект «Успех каждого ребенка» в рамках национального проекта «Образование».

- 11. Федеральный проект «Патриотическое воспитание граждан Российской Федерации» в рамках национального проекта «Образование» (до 2024 г.).
- 12. Стратегия развития воспитания в Свердловской области до 2025 года, утв. Постановлением Правительства Свердловской области от 7 декабря 2017 г. № 900-ПП.
- 13. Государственная программа Российской Федерации «Развитие образования», утвержденная постановлением Правительства Российской Федерации от 26 декабря 2017 года N 1642
- 14. Приказ Министерства образования и молодежной политики Свердловской области от 30.03.2018 г. № 162-Д «Об утверждении Концепции развития образования на территории Свердловской области на период до 2035 года».
 - Региональным социально экономическим и социокультурным потребностям и проблемам;
 - Потребностям и проблемам детей и их родителей (или законных представителей).

Развитие робототехники в настоящее время включено в перечень приоритетных направлений технологического развития информационных технологий, которые определены Правительством в рамках «Стратегии развития отрасли информационных технологий в РФ на 2014— 2020 годы и на перспективу до 2025 года». Важным условием успешной подготовки инженерно-технических кадров в рамках обозначенной стратегии развития является внедрение инженерно-технического образования в систему воспитания школьников. Развитие образовательной робототехники в России сегодня идет в двух направлениях: в рамках общей и дополнительной системы образования. Образовательная робототехника позволяет вовлечь в процесс технического творчества детей, начиная с младшего школьного возраста, дает возможность учащимся создавать инновации своими руками, и заложить основы успешного освоения профессии инженера в будущем.

образовании настоящее время применяют В робототехнические комплексы, одним из которых является конструктор LEGO EV3. Работа с образовательными конструкторами LEGO EV3 позволяет учащимся в форме игры исследовать основы механики, физики и программирования. Разработка, сборка и построение алгоритма поведения модели позволяет учащимся самостоятельно освоить целый набор знаний из разных областей, в том числе робототехники, электроники, механики, способствует программирования, что повышению интереса быстроразвивающейся науке робототехнике.

Отличительные особенности общеразвивающей программы

Рабочая программа составлена на основе программы курса «Первый шаг в робототехнику» Д.Г. Копосова.

Содержание программы выстроено таким образом, чтобы помочь учащемуся постепенно, шаг за шагом раскрыть в себе творческие

возможности и самореализоваться в современном мире.

В процессе конструирования и программирования управляемых моделей учащиеся получат дополнительные знания в области физики, механики и информатики, что, в конечном итоге, изменит картину восприятия учащимися технических дисциплин, переводя их из разряда умозрительных в разряд прикладных.

С другой стороны, основные принципы конструирования простейших механических систем и алгоритмы их автоматического функционирования под управлением программируемых контроллеров, послужат хорошей почвой для последующего освоения более сложного теоретического материала на занятиях.

Возможность самостоятельной разработки и конструирования управляемых моделей для учащихся в современном мире является очень мощным стимулом к познанию нового и формированию стремления к самостоятельному созиданию, способствует развитию уверенности в своих силах и расширению горизонтов познания. Занятия по Программе позволяют заложить фундамент для подготовки будущих специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике.

Адресат общеразвивающей программы

Программа адресована учащимся 11-15 лет.

Средний школьный возраст рассматривается как весьма важный этап развития в силу того, что происходящие в этом возрасте, изменения являются существенными для правильной оценки закономерностей развития в более позднем периоде. В рассматриваемый период интенсивно происходит развитие самосознания. Это выражается, прежде всего, в возникновении зчувства взрослости. Сущность его состоит в том, что подросток испытывает огромное стремление к самоутверждению себя как личности равной чтобы с ним считались, взрослому, требует, уважали его мнение. Характерной чертой ребенка данного возраста можно назвать специфическую селективность: интересные дела или интересные занятия являются очень увлекательными для ребят, поэтому теперь они могут довольно долго сосредотачиваться на чём-то одном. Организация процесса учебы и воспитания должна быть таковой, чтобы у подростка не было возможности, времени или желания отвлекаться от учебного процесса на посторонние дела.

Наполняемость в группе 10-12 человек.

Режим занятий

Занятия проводятся 1 раз в неделю по 2 часа. Продолжительность занятия 40 минут. Перерыв между занятиями 10 минут.

Объем общеразвивающей программы- 68 часов.

Срок освоения общеразвивающей программы - 1 год.

Особенности организации образовательного процесса — форма реализации программы традиционная.

Модель реализации программы традиционная, представляет собой линейную последовательность освоения содержания в течение одного года.

Перечень форм обучения - фронтальная, индивидуально-групповая, групповая.

Перечень видов занятий - практическое занятие, соревнования.

Перечень форм подведения итогов реализации дополнительной общеразвивающей программы: практическая работа, педагогическое наблюдение, опрос, тест, итоговая диагностическая работа.

1.2. Цель и задачи общеразвивающей программы

Цель программы - овладение навыками начального технического конструирования через изучение понятий конструкций и их основных свойств.

Задачи программы:

Обучающие:

- -способствовать развитию интереса к технике, конструированию, программированию, высоким технологиям;
- -учиться создавать и конструировать механизмы и машины, включая самодвижущиеся;
- -учиться программировать простые действия и реакции механизмов;
- -формировать умение исследовать проблему, анализировать имеющиеся ресурсы, выдвигать идеи, планировать решения и реализовывать их;
- -обучение решению творческих, нестандартных ситуаций на практике при конструировании и моделировании объектов окружающей действительности; -расширять знания учащихся об окружающем мире;

Развивающие:

- развивать познавательный интерес к моделированию;
- развивать внимание, память, логическое мышление.

Воспитательные:

- формировать культуру общения и поведения в коллективе;
- прививать навыки здорового образа жизни;
- воспитывать трудолюбие, самостоятельность, активность, волю к победе.

1.3. Содержание общеразвивающей программы Учебный (тематический) план

No	Название раздела,	Коли	Количество часов		Формы
Π/Π	темы	Всего	теория	практика	аттестации/контроля
	Введение. Техника безопасности и правила поведения	2	1	1	Педагогическое наблюдение
	Изучение палитры блоков управления	12	3	9	Педагогическое наблюдение

2.1.	Зеленая палитра	5	1	4	Педагогическое наблюдение
2.2.	Оранжевая палитра	7	2	5	Педагогическое наблюдение
3	Изучение датчиков	12	4	8	Педагогическое наблюдение
3.1	Датчик касания.	4	1	3	Педагогическое наблюдение
3.2	Датчик цвета.	3	1	2	Педагогическое наблюдение
3.3	Датчик ультразвука.	5	2	3	Педагогическое наблюдение
4	Сборка моделей по схеме	12	2	10	Практическая работа
4.1	Модель «Гоночная машина»	1	0	1	Практическая работа
4.2	Модель «Гимнаст»	1	0	1	Практическая работа
4.3	Модель «Роботизированная рука»	2	1	1	Практическая работа
4.4	Модель «Валли»	2	0	2	Практическая работа
4.5	Модель «Щенок»	1	0	1	Практическая работа
4.6	Модель «Сортировщик цвета»	3	1	2	Практическая работа
4.7	Модель «Гиробой»	2	0	2	Практическая работа
5	Соревнования по сумо роботов	8	2	6	Практическая работа
5.1	Сумо роботов.	4	1	3	Практическая работа
5.2	Сумо роботов с датчиком цвета.	4	1	3	Практическая работа

6	Кегельринг	8	2	6	Практическая работа
	Сборка собственных моделей	14		14	Практическая работа
	ВСЕГО:	68	14	54	

Содержание учебного (тематического) плана

1. Введение

Техника безопасности и правила поведения

Теория. Правила техники безопасности при работе на ноутбуке. Правила работы с наборами LEGO EducationEV3 и его комплектующими.

Практика. Работа за компьютером по образцу.

2. Изучение палитры блоков управления.

2.1. Зеленая палитра.

Теория. Знакомство с блоками для программирования моторов. Изучение блока рулевое управление, блока независимое управление, блока средний мотор и блока большой мотор. Анализ различия данных блоков. Изучение параметров выбора направления и скорости движения модели. Знакомство с блоками звук и экран. Изучение возможности программы для добавления звука и изображения на экран контроллера. Знакомство с блоком индикатор состояния модуля.

Практика. Сбор модели «Приводная платформа». Создание программы для работы модели.

2.2. Оранжевая палитра

Теория. Знакомство с блоком ожидание. Знакомство с блоком цикл. Знакомство с блоком переключатель

Практика. Создание программы для работы модели. Рефлексия.

3. Датчики

3.1. Датчик касания.

Теория. Знакомство с датчиком касанием. Закрепление пройденного материала по блокам программирования.

Практика. Установка на модель датчика касания. Создание программы для работы модели. Рефлексия.

3.2. Датчик цвета.

Теория. Знакомство с датчиком цвета. Закрепление пройденного материала по блокам программирования.

Практика. Установка на модель датчика цвета. Создание программы для работы модели, для распознания цвета. Создание программы для движения по черной линии с одним датчиком цвета.

3.3. Датчик ультразвука.

Теория. Знакомство с датчиком ультразвука. Закрепление пройденного материала по блокам программирования.

Практика. Установка датчика ультразвука. Создание программы для работы модели. Рефлексия.

4. Сборка роботов по схеме.

4.1. Модель «Гоночная машина»

Теория. Знакомство с моделью «Гоночная машина». Изучение червячной передачи. Закрепление знаний по использованию датчика ультразвука.

Практика. Сбор модели «Гоночная машина». Создание программы для работы модели. Рефлексия.

4.2. Модель «Гимнаст»

Теория. Знакомство с моделью «Гимнаст». Изучение процесса передачи движения и преобразования энергии в модели.

Практика. Сбор модели «Гимнаст». Создание программы для работы модели. Рефлексия.

4.3. Модель «Роботизированная рука»

Теория. Знакомство с моделью «Роботизированная рука». Изучение зубчатой передачи. Закрепление знаний по использованию датчика цвета.

Практика. Сбор модели «Роботизированная рука». Создание программы для работы модели. Рефлексия.

4.4. Модель «Валли»

Теория. Знакомство с моделью «Валли». Изучение кулачкового механизма, работающего в модели.

Практика. Сбор модели «Валли». Создание программы для работы модели. Рефлексия.

4.5. Модель «Щенок»

Теория. Знакомство с моделью «Щенок». Изучение кулачкового механизма, работающего в модели.

Практика. Сбор модели «Щенок». Создание программы для работы модели. Рефлексия.

4.6. Модель «Сортировщик цвета»

Теория. Знакомство с моделью «Сортировщик цвета». Изучение кулачкового механизма, работающего в модели.

Практика. Сбор модели «Сортировщик цвета». Создание программы для работы модели. Рефлексия.

4.7. Модель «Гиробой»

Теория. Знакомство с моделью «Гиробой». Изучение кулачкового механизма, работающего в модели.

Практика. Сбор модели «Гиробой». Создание программы для работы модели. Рефлексия.

5. Соревнования «Сумо роботов»

5.1. Сумо роботов.

Теория. Знакомство с правилами проведения соревнований. Изучение особенностей модели для данного соревнования. Сбор модели для соревнований.

Практика. Сбор модели для соревнований. Создание программы для работы модели. Соревнования. Рефлексия.

5.2. Сумо роботов с датчиком цвета.

Практика. Сбор модели для соревнований. Создание программы для работы модели. Соревнования. Рефлексия.

6. Кегельринг

6.1. Кегельринг.

Теория. Знакомство с правилами проведения соревнований. Изучение особенностей модели для данного соревнования.

Практика. Сбор модели для соревнований. Создание программы для работы модели. Соревнования. Рефлексия.

7. Сборка собственных моделей

Практика. Собственное конструирование. Обдумывание моделей. Конструирование. Программирование. Защита проекта.

1.4. Планируемые результаты

Совокупность знаний, умений, навыков, личностных качеств, компетенций, приобретаемых учащимися при освоении программы.

Метапредметные результаты

Познавательные УУД:

- -определять, различать и называть детали конструктора;
- -конструировать по заданной схеме, по условиям, заданным взрослым, по чертежу, и самостоятельно строить схему;
- -ориентироваться в своей системе знаний: отличать новое от уже известного;
- -перерабатывать полученную информацию: делать выводы в результате совместной работы всей группы, сравнивать и группировать предметы и их образы;

Регулятивные УУД:

- -уметь работать по предложенным инструкциям;
- -уметь излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений.
- -определять и формулировать цель деятельности на занятии с помощью учителя;

Коммуникативные УУД:

- -уметь работать в паре и в коллективе; уметь рассказывать о постройке;
- -уметь работать над проектом в команде, эффективно распределять обязанности.

Личностные результаты

-оценивать жизненные ситуации (поступки, явления, события) с точки зрения собственных ощущений (явления, события), в предложенных

ситуациях отмечать конкретные поступки, которые можно оценить как хорошие или плохие;

- называть и объяснять свои чувства и ощущения, объяснять своё отношение к поступкам с позиции общечеловеческих нравственных ценностей;
 - -самостоятельно и творчески реализовывать собственные замыслы

Предметные результаты

Учащиеся должны знать:

- простейшие основы механики;
- виды конструкций, соединение деталей;
- последовательность изготовления конструкций;
- элементы начального программирования.

Учащиеся должны уметь:

- работать над проектом в команде, эффективное распределение обязанностей;
 - реализовывать творческий замысел.

2. Организационно-педагогических условия

2.1. Календарный учебный график на 2023 – 2024 учебный год

Год	Дата	Дата	Количес	Количес	Количест	Режим
обучения	начала	окончания	ТВО	ТВО	ВО	занятий
	обучения	обучения	учебных	учебных	учебных	
			недель	дней	часов	
1 год	01.09.2023	28.05.2024	34	34	68	1 раз в
						неделю
						по 2
						часа

Каникулы: Осенние – 28.10.2023г. – 06.11.2023г.

Зимние -30.12.2023г. -09.01.2024г.

Весенние -23.03.2024г. -31.03.2024г.

2.2. Условия реализации программы

Материально- техническое обеспечение

Обеспечивается образовательной организацией:

- учебный кабинет (включая типовую мебель) на 12 человек.
- компьютер персональный 12 штук.

Все рабочие места располагают необходимым программным обеспечением.

Кадровое обеспечение

Реализацию программы обеспечивает педагог дополнительного образования, обладающий профессиональными знаниями и компетенциями в организации и ведении образовательной деятельности.

Уровень образования педагога: среднее профессиональное образование, высшее образование — бакалавриат, высшее образование — специалитет или магистратура.

Уровень соответствие квалификации: программа реализуется без требований к соответствию квалификации педагога.

Профессиональная категория: без требований к категории.

Методические материалы

- инструкции по сборке моделей;
- судейские и организационные документы

(критерии оценки моделей, протоколы, карточки участников).

При организации практических занятий и творческих проектов формируются малые группы, состоящие из 2-3 учащихся. Для каждой группы выделяется отдельное рабочее место, состоящее из компьютера и конструктора.

Применяются следующие методы обучения:

- Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения материалов);
- Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей)
- Контрольный метод (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий)
- Групповая работа (используется при совместной сборке моделей, а также при разработке проектов)

Курс ведется в виде сообщающих бесед и практических занятий. В ходе беседы дается информация о конкретных методах и приемах работы с программным и техническим обеспечением. На практических занятиях учащиеся, опираясь на полученные сведения и информацию, самостоятельно выполняют задания.

В конце года обучающимися выполняется проектная работа. По итогам защиты проектных работ учитель делает вывод об уровне усвоения обучаемыми материала курса.

2.3. Формы аттестации/контроля и оценочные материалы

Текущий контроль уровня усвоения материала осуществляется по результатам выполнения обучающихся практических работ. (Приложение 1), (Приложение 2).

Промежуточный контроль уровня усвоения осуществляется по результатам теста (Приложение 3) и практической работы (Приложение 4) в декабре.

Итоговый контроль реализуется в результате выполнения практических работ (Приложение 6) и итоговой диагностической работы (Приложение 5) в конце года.

3. Список литературы

Литература для педагога:

- 1. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 273-ФЗ «Об образовании в Российской Федерации».
- 2. Концепция развития дополнительного образования детей до 2030 года, утвержденная распоряжением Правительства Российской Федерации от 31 марта 2022 г. № 678-р.
- 3. Приказ Министерства просвещения Российской Федерации от 09.11.2018 №196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- 4. Постановление Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи».
- 5. Методические рекомендации по проектированию дополнительных общеразвивающих программ (Письмо Министерства образования и науки Российской Федерации № 09-3242 от 18.11.2015 г.).
- 6. Приказ Минобрнауки России от 23.08.2017 №816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ».
- 7. Стратегия развития воспитания в Российской Федерации на период до 2025 года. Утверждена распоряжением Правительства РФ от 29 мая 2015 г. № 996-р.
- 8. Государственная программа Российской Федерации «Развитие образования», утв. Постановлением Правительства РФ от 26 декабря 2017 г. №1642.
- 9. Национальные проект «Образование» (паспорт утвержден президиумом Совета при Президенте Российской Федерации по стратегическому развитию и национальным проектам (протокол от 24 декабря 2018 г. № 16)).
- 10. Федеральный проект «Успех каждого ребенка» в рамках национального проекта «Образование».
- 11. Федеральный проект «Патриотическое воспитание граждан Российской Федерации» в рамках национального проекта «Образование» (до 2024 г.).
- 12. Стратегия развития воспитания в Свердловской области до 2025 года, утв. Постановлением Правительства Свердловской области от 7 декабря 2017 г. № 900-ПП.

- 13. Государственная программа Российской Федерации «Развитие образования», утвержденная постановлением Правительства Российской Федерации от 26 декабря 2017 года N 1642
- 14. Приказ Министерства образования и молодежной политики Свердловской области от 30.03.2018 г. № 162-Д «Об утверждении Концепции развития образования на территории Свердловской области на период до 2035 года».
 - 15. Макаров, И. М. Робототехника. История и перспективы / И.М. Макаров, Ю.И. Топчеев. М.: Наука, МАИ, 2003. 352 с.
 - 16. Предко, М. 123 эксперимента по робототехнике / М. Предко. М.: СПб. [и др.] : Питер, 2007. 544 с.

Литература для обучающихся (родителей):

- 1. Копосов Д. Г. Первый шаг в робототехнику: практикум для 5-6 классов / Д. Г. Копосов. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2015. 288 е.: [4]с. цв. вкл.
- 2. http://lore.by/o-nas/nashi-roboty/obzor-robotov-lego-mindstorms-nxt-2-0/
- 3. http://robotclub.ru/robot163.php
- 4. http://www.prorobot.ru/lego.php

Приложение 1

Текущий контроль

Цель – выявить уровень практических умений учащихся.

Форма контроля – практическая работа.

Уровень	Характеристика выполненной учеником работы
Высокий	Соблюдена правильная технологическая
	последовательность при конструировании (сборке);
	обеспечена прочность и целесообразность конструкции;
	соблюдены временные рамки; изделие соответствует
	высоким эстетическим и конструктивным нормам.
Средний	В целом соблюдена правильная технологическая
	последовательность при конструировании (сборке);
	обеспечена прочность конструкции, имеются лишние с
	позиции целесообразности элементы конструкции; в целом
	соблюдён порядок на рабочем месте; время изготовления
	несколько превысило временные рамки; изделие
	соответствует удовлетворительным эстетическим и
	конструктивным нормам.
Низкий	Не соблюдена правильная технологическая
	последовательность при конструировании (сборке);
	конструкция непрочная и нецелесообразная; не соблюдены
	временные рамки; изделие не соответствует
	удовлетворительным эстетическим и конструктивным
	нормам.

Текущий контроль

Цель контроля: определение уровня освоения учащимися раздела (темы) программы.

Форма контроля: педагогическое наблюдение.

Критерии оценки результатов:

- Высокий уровень учащийся самостоятельно не только собирает модель по инструкции, но и придумает свою и программирует ее.
- Средний уровень учащийся собирает модель по инструкции, при программировании допускает ошибки, но при подсказке педагога исправляет ее.
- Низкий уровень учащийся не может собрать может по инструкции, собирает только при постоянном контроле со стороны педагога либо другого учащегося.

Промежуточная аттестация

Цель - выявить уровень освоения теоретических знаний учащихся.

Форма контроля: тест.

Задание 1.

Задания с выборочным ответом:

- 1. Сколько всего двигателей в наборе LEGO Mindstorms
- два
- три
- четыре
 - 2. Какого режима HET для мотора в наборе LEGO Mindstorms EV3
- включить на количество градусов
- включить на количество оборотов
- включить на количество секунд
- включить на количество сантиметров
- ВКЛЮЧИТЬ
- выключить
 - 3. К каким портам в LEGO Mindstorms EV3 подключаются двигатели:
- порты 1-4
- порты А-D
- можно подключать к любым портам
 - 4. К каким портам в LEGO Mindstorms EV3 подключаются датчики:
- порты 1-4
- порты A-D
- можно подключать к любым портам
 - 5. Какого типа роботов НЕ существует:
- робот-манипулятор
- робот подражатель
- робот присутствия
- робот искатель

Уровни оценки знаний:

- 4-5- правильных ответов высокий уровень;
- 2-3- правильных ответов средний уровень;
- 1- правильных ответов низкий уровень.

Приложение 4

Промежуточная аттестация

Цель – выявить уровень практических умений учащихся.

Форма контроля: практическая работа.

Уровень	Характеристика выполненной учеником работы		
Высокий	Соблюдена правильная технологическая		
	последовательность при конструировании (сборке);		
	обеспечена прочность и целесообразность конструкции;		
	соблюдены временные рамки; изделие соответствует		
	высоким эстетическим и конструктивным нормам.		
Средний	В целом соблюдена правильная технологическая		
	последовательность при конструировании (сборке);		
	обеспечена прочность конструкции, имеются лишние с		
	позиции целесообразности элементы конструкции; в целом		
	соблюдён порядок на рабочем месте; время изготовления		
	несколько превысило временные рамки; изделие		
	соответствует удовлетворительным эстетическим и		
	конструктивным нормам.		
Низкий	Не соблюдена правильная технологическая		
	последовательность при конструировании (сборке);		
	конструкция непрочная и нецелесообразная; не соблюдены		
	временные рамки; изделие не соответствует		
	удовлетворительным эстетическим и конструктивным		
	нормам.		

Итоговая аттестация

Цель: выявить уровень освоения теоретических знаний учащихся в процессе освоения программы.

Форма контроля: опрос.

- 1. Назовите основные элементы конструктора.
- 2. Для каких задач используется датчик цвета?
- 3. Для каких задач используется ультразвуковой датчик?
- 4. Какие этапы проектирования и разработки вы можете назвать?
- 5. Какие элементы компьютерной среды вы знаете?

Уровни оценки знаний:

- 4-5- правильных ответов высокий уровень;
- 2-3- правильных ответов средний уровень;
- 1- правильных ответов низкий уровень.

Итоговая аттестация

Цель – выявить уровень практических умений учащихся.

Форма контроля: практическая работа.

Уровень	Характеристика выполненной учеником работы
Высокий	Соблюдена правильная технологическая
	последовательность при конструировании (сборке);
	обеспечена прочность и целесообразность конструкции;
	соблюдены временные рамки; изделие соответствует
	высоким эстетическим и конструктивным нормам.
Средний	В целом соблюдена правильная технологическая
	последовательность при конструировании (сборке);
	обеспечена прочность конструкции, имеются лишние с
	позиции целесообразности элементы конструкции; в целом
	соблюдён порядок на рабочем месте; время изготовления
	несколько превысило временные рамки; изделие
	соответствует удовлетворительным эстетическим и
	конструктивным нормам.
Низкий	Не соблюдена правильная технологическая
	последовательность при конструировании (сборке);
	конструкция непрочная и нецелесообразная; не соблюдены
	временные рамки; изделие не соответствует
	удовлетворительным эстетическим и конструктивным
	нормам.